Sunday, November 6, 2011

Nokia Care Brisbane. Time For a Second Chance

Last night I determined that the power button on my Nokia N8 was not working.

I hard reset the phone, and the fault was confirmed. I could not turn on the phone by any means.

Luckily I had an alarm set for my wake up call this morning which forced the phone to boot and I was able to select "Turn Phone On" from the alarm menu (great thinking Nokia for adding in this failsafe).

This is the second Nokia N8 I have had to send in for service. I have to say the N8 is probably the worst handset I have ever owned from Nokia as far as hardware reliability goes.

So off I go to the Nokia Care Centre in Brisbane at 9am when they open. You might remember I had a pretty woeful customer service experience there the first time I had to check my N8 in for mainboard replacement.

I really hope that Nokia Care Brisbane has instituted some customer service training since my last visit. Either way I'll let you know once my phone has been fixed/replaced/upgraded.

It should be as simple as replacing the h/w power switch on the mainboard. Whether it is easier to just replace the phone and fix the switch afterwards, I'll leave that up to the great techs at Nokia Care.

UPDATE: Submitted for Repair

Much better experience than last time. Was greeted by Elaine this time.

Elaine explained to me that my phone was 2 days out of warranty, but the great thing was that she was able to organise the phone to be repaired under warranty. I really appreciated this, and I want to thank Elaine for bending the rules in this case.

Elaine also organised a loan handset for me (for a refundable deposit of $100). While it was an E71 (certainly a jump back from the N8, and it took me a while to get used to the interface after S60v5 and S^3), it was much better to get the loaner than be without a phone for up to three days (the maximum time Nokia Care will take to repair the phone, according to their charter).

Elaine did mention that while the charter said up to three days, she said that if the fix was an easy one, it may be ready by this afternoon. That's a pretty good turnaround.

I'll keep you posted on the result: positive or negative.

UPDATE: Fixed within a Day!

Great job Nokia Care Brisbane. I received a call the same day to confirm my phone was ready for collection.

The fault was a mechanical failure of the Power switch. They also reformatted the phone to remove a lock-up fault I experienced when trying to transfer my files off the phone in Mass Storage mode (unfortunately I lost some photos/videos).

CUSTOMER SERVICE: A+

Nokia Care Brisbane really has instituted some staff training, and I can't speak highly enough of the staff and the way they assisted me with this problem. This was a completely different experience from when I was basically chastised for being a blogger and speaking ill of them when the N8 had a complete mainboard failure.

You have read this article Nokia Care / Nokia N8 with the title . You can bookmark this page URL https://azaquery.blogspot.com/2011/11/nokia-care-brisbane-time-for-second.html. Thanks!
Thursday, November 3, 2011

JNI Local Reference Changes in ICS

[This post is by Elliott Hughes, a Software Engineer on the Dalvik team. — Tim Bray]

If you don’t write native code that uses JNI, you can stop reading now. If you do write native code that uses JNI, you really need to read this.

What’s changing, and why?

Every developer wants a good garbage collector. The best garbage collectors move objects around. This lets them offer very cheap allocation and bulk deallocation, avoids heap fragmentation, and may improve locality. Moving objects around is a problem if you’ve handed out pointers to them to native code. JNI uses types such as jobject to solve this problem: rather than handing out direct pointers, you’re given an opaque handle that can be traded in for a pointer when necessary. By using handles, when the garbage collector moves an object, it just has to update the handle table to point to the object’s new location. This means that native code won’t be left holding dangling pointers every time the garbage collector runs.

In previous releases of Android, we didn’t use indirect handles; we used direct pointers. This didn’t seem like a problem as long as we didn’t have a garbage collector that moves objects, but it let you write buggy code that still seemed to work. In Ice Cream Sandwich, even though we haven't yet implemented such a garbage collector, we've moved to indirect references so you can start detecting bugs in your native code.

Ice Cream Sandwich features a JNI bug compatibility mode so that as long as your AndroidManifest.xml’s targetSdkVersion is less than Ice Cream Sandwich, your code is exempt. But as soon as you update your targetSdkVersion, your code needs to be correct.

CheckJNI has been updated to detect and report these errors, and in Ice Cream Sandwich, CheckJNI is on by default if debuggable="true" in your manifest.

A quick primer on JNI references

In JNI, there are several kinds of reference. The two most important kinds are local references and global references. Any given jobject can be either local or global. (There are weak globals too, but they have a separate type, jweak, and aren’t interesting here.)

The global/local distinction affects both lifetime and scope. A global is usable from any thread, using that thread’s JNIEnv*, and is valid until an explicit call to DeleteGlobalRef(). A local is only usable from the thread it was originally handed to, and is valid until either an explicit call to DeleteLocalRef() or, more commonly, until you return from your native method. When a native method returns, all local references are automatically deleted.

In the old system, where local references were direct pointers, local references were never really invalidated. That meant you could use a local reference indefinitely, even if you’d explicitly called DeleteLocalRef() on it, or implicitly deleted it with PopLocalFrame()!

Although any given JNIEnv* is only valid for use on one thread, because Android never had any per-thread state in a JNIEnv*, it used to be possible to get away with using a JNIEnv* on the wrong thread. Now there’s a per-thread local reference table, it’s vital that you only use a JNIEnv* on the right thread.

Those are the bugs that ICS will detect. I’ll go through a few common cases to illustrate these problems, how to spot them, and how to fix them. It’s important that you do fix them, because it’s likely that future Android releases will utilize moving collectors. It will not be possible to offer a bug-compatibility mode indefinitely.

Common JNI reference bugs

Bug: Forgetting to call NewGlobalRef() when stashing a jobject in a native peer

If you have a native peer (a long-lived native object corresponding to a Java object, usually created when the Java object is created and destroyed when the Java object’s finalizer runs), you must not stash a jobject in that native object, because it won’t be valid next time you try to use it. (Similar is true of JNIEnv*s. They might be valid if the next native call happens on the same thread, but they won’t be valid otherwise.)

 class MyPeer {
public:
MyPeer(jstring s) {
str_ = s; // Error: stashing a reference without ensuring it’s global.
}
jstring str_;
};

static jlong MyClass_newPeer(JNIEnv* env, jclass) {
jstring local_ref = env->NewStringUTF("hello, world!");
MyPeer* peer = new MyPeer(local_ref);
return static_cast<jlong>(reinterpret_cast<uintptr_t>(peer));
// Error: local_ref is no longer valid when we return, but we've stored it in 'peer'.
}

static void MyClass_printString(JNIEnv* env, jclass, jlong peerAddress) {
MyPeer* peer = reinterpret_cast<MyPeer*>(static_cast<uintptr_t>(peerAddress));
// Error: peer->str_ is invalid!
ScopedUtfChars s(env, peer->str_);
std::cout << s.c_str() << std::endl;
}

The fix for this is to only store JNI global references. Because there’s never any automatic cleanup of JNI global references, it’s critically important that you clean them up yourself. This is made slightly awkward by the fact that your destructor won’t have a JNIEnv*. The easiest fix is usually to have an explicit ‘destroy‘ function for your native peer, called from the Java peer’s finalizer:

 class MyPeer {
public:
MyPeer(JNIEnv* env, jstring s) {
this->s = env->NewGlobalRef(s);
}
~MyPeer() {
assert(s == NULL);
}
void destroy(JNIEnv* env) {
env->DeleteGlobalRef(s);
s = NULL;
}
jstring s;
};

You should always have matching calls to NewGlobalRef()/DeleteGlobalRef(). CheckJNI will catch global reference leaks, but the limit is quite high (2000 by default), so watch out.

If you do have this class of error in your code, the crash will look something like this:

    JNI ERROR (app bug): accessed stale local reference 0x5900021 (index 8 in a table of size 8)
JNI WARNING: jstring is an invalid local reference (0x5900021)
in LMyClass;.printString:(J)V (GetStringUTFChars)
"main" prio=5 tid=1 RUNNABLE
| group="main" sCount=0 dsCount=0 obj=0xf5e96410 self=0x8215888
| sysTid=11044 nice=0 sched=0/0 cgrp=[n/a] handle=-152574256
| schedstat=( 156038824 600810 47 ) utm=14 stm=2 core=0
at MyClass.printString(Native Method)
at MyClass.main(MyClass.java:13)

If you’re using another thread’s JNIEnv*, the crash will look something like this:

 JNI WARNING: threadid=8 using env from threadid=1
in LMyClass;.printString:(J)V (GetStringUTFChars)
"Thread-10" prio=5 tid=8 NATIVE
| group="main" sCount=0 dsCount=0 obj=0xf5f77d60 self=0x9f8f248
| sysTid=22299 nice=0 sched=0/0 cgrp=[n/a] handle=-256476304
| schedstat=( 153358572 709218 48 ) utm=12 stm=4 core=8
at MyClass.printString(Native Method)
at MyClass$1.run(MyClass.java:15)

Bug: Mistakenly assuming FindClass() returns global references

FindClass() returns local references. Many people assume otherwise. In a system without class unloading (like Android), you can treat jfieldID and jmethodID as if they were global. (They’re not actually references, but in a system with class unloading there are similar lifetime issues.) But jclass is a reference, and FindClass() returns local references. A common bug pattern is “static jclass”. Unless you’re manually turning your local references into global references, your code is broken. Here’s what correct code should look like:

 static jclass gMyClass;
static jclass gSomeClass;

static void MyClass_nativeInit(JNIEnv* env, jclass myClass) {
// ‘myClass’ (and any other non-primitive arguments) are only local references.
gMyClass = env->NewGlobalRef(myClass);

// FindClass only returns local references.
jclass someClass = env->FindClass("SomeClass");
if (someClass == NULL) {
return; // FindClass already threw an exception such as NoClassDefFoundError.
}
gSomeClass = env->NewGlobalRef(someClass);
}

If you do have this class of error in your code, the crash will look something like this:

    JNI ERROR (app bug): attempt to use stale local reference 0x4200001d (should be 0x4210001d)
JNI WARNING: 0x4200001d is not a valid JNI reference
in LMyClass;.useStashedClass:()V (IsSameObject)

Bug: Calling DeleteLocalRef() and continuing to use the deleted reference

It shouldn’t need to be said that it’s illegal to continue to use a reference after calling DeleteLocalRef() on it, but because it used to work, so you may have made this mistake and not realized. The usual pattern seems to be where native code has a long-running loop, and developers try to clean up every single local reference as they go to avoid hitting the local reference limit, but they accidentally also delete the reference they want to use as a return value!

The fix is trivial: don’t call DeleteLocalRef() on a reference you’re going to use (where “use” includes “return”).

Bug: Calling PopLocalFrame() and continuing to use a popped reference

This is a more subtle variant of the previous bug. The PushLocalFrame() and PopLocalFrame() calls let you bulk-delete local references. When you call PopLocalFrame(), you pass in the one reference from the frame that you’d like to keep (typically for use as a return value), or NULL. In the past, you’d get away with incorrect code like the following:

 static jobjectArray MyClass_returnArray(JNIEnv* env, jclass) {
env->PushLocalFrame(256);
jobjectArray array = env->NewObjectArray(128, gMyClass, NULL);
for (int i = 0; i < 128; ++i) {
env->SetObjectArrayElement(array, i, newMyClass(i));
}
env->PopLocalFrame(NULL); // Error: should pass 'array'.
return array; // Error: array is no longer valid.
}

The fix is generally to pass the reference to PopLocalFrame(). Note in the above example that you don’t need to keep references to the individual array elements; as long as the GC knows about the array itself, it’ll take care of the elements (and any objects they point to in turn) itself.

If you do have this class of error in your code, the crash will look something like this:

  JNI ERROR (app bug): accessed stale local reference 0x2d00025 (index 9 in a table of size 8)
JNI WARNING: invalid reference returned from native code
in LMyClass;.returnArray:()[Ljava/lang/Object;

Wrapping up

Yes, we asking for a bit more attention to detail in your JNI coding, which is extra work. But we think that you’ll come out ahead on the deal as we roll in better and more sophisticated memory management code.

You have read this article with the title . You can bookmark this page URL https://azaquery.blogspot.com/2011/11/jni-local-reference-changes-in-ics_3.html. Thanks!
Tuesday, November 1, 2011

Android 4.0 Graphics and Animations

[This post is by Romain Guy and Chet Haase, Android engineers who have been known to collaborate on the subject of graphics, UIs, and animation. You can read more from them on their blogs at curious-creature.org and graphics-geek.blogspot.com. — Tim Bray]

Earlier this year, Android 3.0 launched with a new 2D rendering pipeline designed to support hardware acceleration on tablets. With this new pipeline, all drawing operations performed by the UI toolkit are carried out using the GPU.

You’ll be happy to hear that Android 4.0, Ice Cream Sandwich, brings an improved version of the hardware-accelerated 2D rendering pipeline to phones, starting with Galaxy Nexus.

Enabling hardware acceleration

In Android 4.0 (API level 14), hardware acceleration, for the first time, is on by default for all applications. For applications at lower API levels, you can turn it on by adding android:hardwareAccelerated="true" to the <application> tag in your AndroidManifest.xml.

To learn more about the hardware accelerated 2D rendering pipeline visit the official Android developer guide. This guide explains how to control hardware acceleration at various levels, offers several performance tips and tricks and describes in details the new drawing model.

I also encourage you to watch the Android Hardware Accelerated Rendering talk that we gave at Google I/O 2011.

Introducing TextureView

Applications that need to display OpenGL or video content rely today on a special type of UI element called SurfaceView. This widget works by creating a new window placed behind your application’s window. It then punches a hole through your application’s window to reveal the new window. While this approach is very efficient, since the content of the new window can be refreshed without redrawing the application’s window, it suffers from several important limitations.

Because a SurfaceView’s content does not live in the application’s window, it cannot be transformed (moved, scaled, rotated) efficiently. This makes it difficult to use a SurfaceView inside a ListView or a ScrollView. SurfaceView also cannot interact properly with some features of the UI toolkit such as fading edges or View.setAlpha().

To solve these problems, Android 4.0 introduces a new widget called TextureView that relies on the hardware accelerated 2D rendering pipeline and SurfaceTexture. TextureView offers the same capabilities as SurfaceView but, unlike SurfaceView, behaves as a regular view. You can for instance use a TextureView to display an OpenGL scene or a video stream. The TextureView itself can be animated, scrolled, etc.

The following piece of code creates a TextureView to display the video preview from the default camera. The TextureView itself is rotated 45 degrees and semi-transparent.

public class TextureViewActivity extends Activity implements TextureView.SurfaceTextureListener {
private Camera mCamera;
private TextureView mTextureView;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

mTextureView = new TextureView(this);
mTextureView.setSurfaceTextureListener(this);

setContentView(mTextureView);
}

@Override
public void onSurfaceTextureAvailable(SurfaceTexture surface, int width, int height) {
mCamera = Camera.open();

Camera.Size previewSize = mCamera.getParameters().getPreviewSize();
mTextureView.setLayoutParams(new FrameLayout.LayoutParams(
previewSize.width, previewSize.height, Gravity.CENTER));

try {
mCamera.setPreviewTexture(surface);
} catch (IOException t) {
}

mCamera.startPreview();

mTextureView.setAlpha(0.5f);
mTextureView.setRotation(45.0f);
}

@Override
public void onSurfaceTextureSizeChanged(SurfaceTexture surface, int width, int height) {
// Ignored, the Camera does all the work for us
}

@Override
public boolean onSurfaceTextureDestroyed(SurfaceTexture surface) {
mCamera.stopPreview();
mCamera.release();
return true;
}

@Override
public void onSurfaceTextureUpdated(SurfaceTexture surface) {
// Called whenever a new frame is available and displayed in the TextureView
}
}

A TextureView can just as easily be used to embed an OpenGL scene in your application. As of Android 4.0, eglCreateWindowSurface() can be used to render into a SurfaceTexture object.

Animation

There were minor improvements in Android 4.0 to some of the new animation facilities that were added in the 3.x releases.

First, if you're new to the new android.animation package and classes added in 3.0 and 3.1, you might want to read Animation in Honeycomb and Introducing ViewPropertyAnimator. These articles discuss the new APIs added in 3.0 that make animation in Android easier, more powerful, and more flexible. The Android 4.0 improvements discussed below are small additions to these core facilities.

Properties

One of the constraints of the Java programming language is the lack of “properties”. There is no way to refer generically to a field or a setter/getter of an object. As long as you know what kind of object you have, this is not a problem, because you then know the set of fields and methods that you can call. But if someone passes you some subclass of Object and you'd like to get or set some value “foo” on it, you're out of luck. You can use reflection or JNI to get access to the foo field/methods, but there is no way to refer directly to a field or a method unless you know the instance type of the object that has that field/method on it.

This is a constraint that the new animation system works within. Its whole job, you might say, is to get and set values on generic objects that it's been told about. If someone wants to animate the alpha property on a View, they tell the system the target object and the name of that field (“alpha”), and the animation system uses JNI to figure out which method(s) act on a field of that name. Basically, it looks for setAlpha() and, sometimes, getAlpha() methods. Then when an animation frame occurs, it calculates the new value and passes it into the setter method that it found.

This seems like a lot of work for what it does, but there's really no way around it. Unless the animation system were specific to View objects, there's no way that it could know that the target object has appropriate setter/getter methods. And even if it did, there's still no way for callers that construct the animations to tell the animator about the property named “alpha”; there are no function handles like there are in other languages, and there's no way to reference a public field either. (I'm ignoring Reflection here, which has Method and Field objects, because this approach requires much more overhead and processing than the simple function/field references of other languages).

If only there were a way to refer to these properties and to get/set them on generic objects...

Now there is. There is a new Property object in the android.util package that does exactly this. This class offers a set() and a get() method. So if someone hands you a Property object, you can safely call the set() and get() methods without knowing anything about the target object and it will do the job. Moreover, it will do it much more efficiently than the current JNI or reflection approaches because it can, depending on the implementation of it, set a field or call a method on the target object directly. For example, the new ALPHA property on View calls setAlpha() on the View object.

The Property class is a generic utility that can be used anywhere, not just in animations. But it's animations that benefit enormously from it, in their ability to handle properties in a type-safe and efficient manner.

For example prior to Android 4.0, you might construct a fade-out animation on some object myView like this:

ObjectAnimator anim = ObjectAnimator.ofFloat(myView, "alpha", 0);

In Android 4.0, you can use the new ALPHA object on View to construct a Property-based animator instead:

ObjectAnimator anim = ObjectAnimator.ofFloat(myView, View.ALPHA, 0);

ViewPropertyAnimator Additions

There were minor API additions to the ViewPropertyAnimator class (introduced in Android 3.1) which make this class more flexible and powerful:

  • cancel(): You can now cancel() a running ViewPropertyAnimator.


  • setStartDelay(): You can now set a startDelay on the ViewPropertyAnimator, just like the startDelay of the other Animator classes.


  • start(): ViewPropertyAnimators start automatically, but they do so on the next animation frame handled. This allows them to collect several requests and bundle them together, which is much more efficient and makes it easier to synchronize multiple animations together. However, if you just want to run a single animation, or want to make sure it starts immediately, at the time of construction, you can call start() to avoid that intervening delay.


LayoutTransition

LayoutTransition (introduced in Android 3.0) continues to provide functionality that makes some kinds of animations easier, specifically when adding, removing, hiding, and showing views. For example, either this snippet in a layout file:

<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:animateLayoutChanges="true"
android:id="@+id/container">

Or this code added at runtime:

 container.setLayoutTransition(new LayoutTransition());

will result in a container that animates the visibility of its children views. So when a view is added to the container, the other children will animate out of the way and then the new one will fade in. Similarly, removing a child from the container will fade it out and then animate the other children around to their final places and sizes.

You can customize the animations and timing behavior of a LayoutTransition object, but the code above allows a very easy way to get reasonable default animation behavior.

One of the constraints in the pre-4.0 version of the class was that it did not account for changes in the bounds of the parent hierarchy. So, for example, if a LinearLayout with horizontal orientation has a layout_width of wrap_content and you want to run a transition that removes an item from that layout, then you might notice the parent snapping to the end size and clipping its children instead of animating all of them into their new positions. The new approach (enabled by default, but disabled by a call to setAnimateParentHierarchy(false)) also animates the layout bounds and scrolling values of the parent layout and its parents, all the way up the view hierarchy. This allows LayoutTransition to account for all layout-related changes due to that view being added or removed from its transitioning container.

Conclusion

The Android 3.0 release saw huge improvements in the visual capabilities of the platform, as we started enabling hardware acceleration and providing new, more flexible animation capabilities. Android 4.0 continues this trend as we continue to work hard on improving the performance, features, and usability of the Android APIs. We’re not done yet, but the enhancements in this release should help you create more exciting Android experiences and applications.

You have read this article Animation and Graphics with the title . You can bookmark this page URL https://azaquery.blogspot.com/2011/11/android-40-graphics-and-animations_1.html. Thanks!